Pocono Mountain School District AP Statistics Course Audit

Course Description

The AP Statistics course at Pocono Mountain East High School is designed to integrate lecture, discussion and exploration. The instruction will be built upon the pillars of exploratory analysis, planning a study, probability and statistical inference. Students will work independently on about half of the assignments and all of the assessments. They will work cooperatively on about half of the assignments and projects. Focus will be given to analyzing raw data sets, calculating meaningful statistics and drawing conclusions. The course will also emphasize writing and original thought. Students will be given a packet of relevant formulas, tables and theorems at the beginning of the course, consistent with the College Board AP Statistics Course Description. This course meets for 180 days, 57 minutes per class.

Textbooks and Resources

Course Text

Yates, Daniel S., David S. Moore, and Daren S. Starnes. *The Practice of Statistics, 2nd edition, 3rd edition*. New York: W.H. Freeman.

Supplemental Texts

Bock, David E., Paul F. Velleman, and Richard D. DeVeaux. *Stats: Modeling the World,* 1st and 2nd editions. Boston: Pearson/Addison-Wesley.

Larson, Ron and Betsy Farber. *Elementary Statistics Picturing the World, 2009*. Upper Saddle River, NJ. Pearson/Prentice Hall.

MINITAB Statistical Software

TI-84 Plus Graphing Calculator

Technology

All students have the option of checking out a TI-84 Plus Graphing Calculator from the library for the duration of the course, as well as the option to purchase their own calculator with statistical capabilities. There is a computer lab available with MINITAB for use throughout the course. Also, students will utilize Microsoft Excel for quick analysis of data sets. Course instruction will include overhead display of the graphing calculator and MINITAB output.

Projects

The course will be project-intensive, and will include several projects that will reinforce concepts and promote analysis and original thought. Examples are included below:

1. Research Proposal

Students will be expected to complete a full length research proposal using APA Format. This project will focus on sampling methods, research design and data analysis. They will be given a template to follow, outlining all relevant sections of the proposal and what information should be included in each section. Students should choose a design appropriate for their study and complete a review of literature relevant to the study.

2. Manufacturer Consistency

Students will collect data from several sources provided by the teacher (could include M&Ms, Skittles, fruit snacks, chips or pretzels, etc...) The students will observe the number of items in each package and create a class data set. They will then perform analysis on one-variable statistics for each brand and comment on the consistency of packaging, with focus on standard deviation.

3. Linear Regression Project

Students will collect bivariate data from an approved online source. They will use technology to perform linear regression analysis on the data. They will create a scatterplot, calculate and interpret the correlation coefficient, find the least-squares regression line, calculate and interpret the coefficient of determination, calculate and plot the residuals, calculate and interpret the standard deviation of the residuals, and draw conclusions about the appropriateness of the model.

4. Final Project

Students may work with up to three per group to complete a comprehensive final project. Each group will be given a different packet of data and other information that they will analyze to answer the included question. The group will function as though they are given an assignment from a supervisor at work and the analysis is necessary for the company to make decisions. The teacher will provide support as needed, but the project is intended to be designed by the students. A set of minimum criteria and a grading rubric will be provided. The project will include graphical displays, linear regression analysis, confidence intervals, hypothesis testing and well-developed written analysis and conclusions.

Course Outline

Unit	Objectives	Resources	Timeframe
Exploration of Data	Classify variables as	Microsoft Excel	12 blocks
	qualitative or quantitative	MINITAB	
	Create and interpret	TI-84 Plus Calculator	
	graphical displays of data,	Preliminary Chapter (all),	
	including bar graphs, pie	Case Study (Magnets)	
	charts, dot plots, stem	Chapter 1, sections 1.1 – 1.2	
	plots, frequency tables	Case Study (Ratings)	
	and histograms		
	Calculate measures of	Chapter 1 Test	
	central tendency,		
	including mean, median		
	and mode		
	Explore and apply		
	properties of mean and		
	median		
	Apply linear		
	transformation to		
	Determine overall patterns of data sets and		
	identify outliers		
	Calculate the five number		
	• Calculate the live-humber		
	Create and interpret box		
	nlots		
	 Use TI-84 Excel and 		
	MINITAB to analyze data		
	graphically		
Measures of spread	• Calculate range, standard	Chapter 2, Section 2.1	10 blocks
and position	deviation and variance	Project: Manufacturer	
	• Explore and apply	Consistency	
	properties of standard	Quiz	
	deviation		
	Calculate standardized		
	score (z-score)		
	Analyze distribution of		
	univariate data, including		
	shape, skewness, center,		
	spread and outliers		
The Normal	Calculate areas and	Chapter 2, Section 2.2	12 blocks
Distribution	proportions under density	Case Study (SAT's)	
	curves	Assignment: Birth Rates in	
	Recognize characteristics	America	
	of a Normal Distribution	Chapter 2 Test	

	 Apply 68-9 Chebysher Calculate below, ab a given me Assess the data set u measures standard of 95-99.7 Re Calculate Calculate given an a 	95-99.7 Rule and v's Theorem proportions ove or between easurement e normality of a sing histogram, of center, deviation and 68- ule percentiles measurement irea under the	AP Free Response Practice	
Bivariate Data	 Ormal cu Create sca and with t Interpret s direction of Identify ex- response s Calculate correlatio Calculate linear regu- squares lin Make preo- regression Calculate Create and residual p Identify or influential Apply tran- achieve lin Identify lu Explain th between of causation Analyze re- between of variables Interpret of contingen Explain Sin 	atterplot by hand ecchnology strength and of correlation explanatory and variable and interpret n coefficient, r. and interpret ression line (least ne) dictions from n line residuals d interpret lots utliers and points nsformations to nearity irking variables e difference correlation and elationships categorical output from a cy table mpson's paradox	Chapter 3, Sections 3.1 – 3.3 Chapter 4, Sections 4.1 – 4.3 Part I Review Exercises AP Free Response Practice Chapter 3 and 4 Exam Project: Linear Regression	15 blocks

Probability	• • • •	List sample space for random events Apply basic rules of probability Apply multiplication and addition rules of probability Define disjoint, independent and complementary events Create and interpret tree diagrams and Venn diagrams Apply counting techniques to calculate probabilities Simulate events using TI- 84 to calculate experimental probabilities	Chapter 6, Sections 6.1 – 6.3 Activity 6A (Austin and Sara's game) Chapter 6 Exam AP Free Response Practice Reading: Missing Airplane (NPR)	12 blocks
Random Variables and Probability Distributions; Binomial and Geometric Distributions	• • • • •	Identify discrete and continuous variables Calculate probabilities of random variables Calculate expected value and standard deviation for random variables Create and interpret probability distributions of random variables Calculate mean and variance of random variables Apply rules for means and variances of random variables Simulate events for random variables using technology Verify conditions of a binomial distribution Calculate probability for a binomial random variable Calculate cumulative distribution tables of binomial random variables Calculate mean and	Chapter 7, Sections 7.1, 7.2 Case Study (income and courts) Chapter 8, Sections 8.1,8.2 Chapter 7 and 8 Exam	10 blocks

	 binomial random variable Use normal approximation to calculate binomial probabilities Verify conditions of a geometric distribution Calculate probabilities of geometric random variables Calculate cumulative distribution tables for geometric random variables Calculate mean and standard deviation of geometric random variable 		
Sampling Distributions	 Apply and explain Central Limit Theorem Identify parameters and statistics in a sample or experiment Explain sampling variability Interpret a sampling distribution Describe bias and variability and connect to sample size Find the mean and standard deviation of the sampling distribution for sample proportion Find the mean and standard deviation of the sample proportion Find the mean and standard deviation of the sample proportion 	Chapter 9, Section 9.1 – 9.3 Part III Review Exercises Case Study (Better batteries) AP Free Response Practice	5 blocks
Introduction to Inference: Confidence Intervals and Hypothesis Testing	 Calculate and interpret large and small sample confidence intervals for the mean Calculate and interpret large and small sample confidence intervals for the proportion Calculate sample size 	Chapter 10, Sections 10.1 – 10.3 Case Study (Give us a call) Chapter 11, Sections 11.1 – 11.4 Case Study (headache) Chapter 10 and 11 Exam AP Free Response Practice Activity 11C	20 blocks

	using margin of error	Chapter 12, Sections 12.1 –	
	 Use technology to 	12.2	
	calculate confidence	Activity 12	
	intervals	Chapter 12 Test	
	Write null and alternative		
	hypotheses for means and		
	proportions		
	 Calculate z or t test- 		
	statistic for hypothesis		
	test and draw conclusion		
	Calculate p-value for		
	hypothesis test and draw		
	conclusion		
	• Preform one-sided and		
	two-sided hypothesis tests		
	for mean and proportion		
	Determine statistical		
	significance		
	• Explain Type I and Type II		
	Error and power in		
	significance testing		
Inferences involving	Perform and analyze a	Chapter 13, Sections 13.1,	10 blocks
two samples	two-sample t test to	13.2	
	compare two means	MINITAB Lab	
	Calculate confidence		
	intervals between two		
	proportions		
	• Perform significance tests		
	for comparing two		
	proportions		
	 Use the two-sample z 		
	procedure to test the		
	hypothesis regarding the		
	equality of two		
	proportions		
	Recognize the appropriate		
	procedure for a study		
Interence for Tables	Perform chi-square test	Chapter 14, Sections	8 blocks
	for goodness of fit	14.1,14.2	
	Interpret chi-square test	Activity 14A	
	results from computer		
	ουτρατ		

Inference for	•	Calculate simple linear	Chapter 15	11 blocks
Regression		regression model	Case Study (Three-pointers)	
	•	Estimate regression		
		parameters		
	•	Calculate confidence		
		interval for slope of		
		regression model		
	•	Perform hypothesis test		
		for slope of regression		
		model		
	•	Interpret computer output		
		for regression inference		
	•			
Experimental Design	•	Identify populations and	Chapter 5, Sections 5.1, 5.2	15 blocks
		samples	Case Study (eating	
	•	Identify methods of	chocolate)	
		sampling (block, matched	Project: Research Proposal	
		pairs, cluster, stratified,	Part II Review Exercises	
		simple)		
	•	Identify strengths and		
		weaknesses of sampling		
		methods and possible bias		
	•	Explain bias, placebo, blind		
		and double blind,		
		randomization, replication		
		and control		
	•	Contrast observational		
		study and experiment		
	•	Design experiments		
	•	Write a complete research		
		proposal		
AP Exam Review	•	Review and prepare for	2007 College Board Practice	15 blocks
		the AP Exam using	Exam	
		practice exam and free	College Board Free	
		response questions from	Response Questions	
4 N O) / A		the College Board		40 5 5 5
ANOVA	•	Interpret ANOVA tables		TO DIOCKS
	•	Recognize the meaning	www.wnfreeman.com/tps3e	
		and appropriateness of		
		comparing means using		
		ANUVA		
Final Project	-	Students may work along	Textbook	15 blocks
		or with one or two others	MINITAB	T2 010CV2
		to complete a	TI-84 Plus	
		comprehensive final	Course Notes	
		nroiect		
		project		